本文目录一览:
- 1、等离子体天体物理学的物理状态
- 2、等离子体简介
- 3、等离子体天体物理学的介绍
等离子体天体物理学的物理状态
等离子体天体物理学是以等离子体物理学为基础的天体物理学分支。宇宙中绝大部分物质是等离子体,因此等离子体天体物理学的研究范围很广,包括日冕、超新星遗迹、活动星系核、致密星、星际介质等。
等离子体物理学目的是研究发生在等离子体中的一些基本过程,包括等离子体的运动、等离子体中的波动现象、等离子体的平衡和稳定性、碰撞与输运过程等等。
据印度天体物理学家沙哈(M·Saha,1893-1956)的计算,宇宙中的99%的物质处于等离子体状态。而我们居住的地球倒是例外的温度较低的星球。此外,对于自然界中的等离子体,我们还可以列举太阳、电离层、极光、雷电等。
宇宙物质绝大部分处于等离子态。例如﹐地球的电离层和地球磁层﹑行星际空间的太阳风﹑太阳的大气﹑某些磁变星﹑星际物质以及星系际物质等。近年来﹐人们认识到天体等离子体远非处于热动平衡状态。
这些物质流动通常由星际介质和恒星活动产生的等离子体和磁场驱动,如恒星的恒星风、超新星爆发和星系团内的大规模等离子体流动等。
)镜面反射:平行光线射到光滑表面上时反射光线也是平行的,这种反射叫做镜面反射。2)漫反射:平行光线射到凹凸不平的表面上,反射光线射向各个方向,这种反射叫做漫反射。
等离子体简介
等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。
等离子体(plasma)又叫做电浆,是由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质,尺度大于德拜长度的宏观电中性电离气体,其运动主要受电磁力支配,并表现出显著的集体行为。
在太阳内部,等离子体温度极高,是高温等离子体,所发生的反应是核聚变。等离子体化学主要研究低温等离子体条件下发生的化学反应。产生等离子体的方法有三种:①热电离。
等离子体的用途非常广泛。从我们的日常生活到工业、农业、环保、军事、医学、宇航、能源、天体等方面,它都有非常重要的应用价值。
“等离子体”技术,是以特定超低频率100Khz电能激发介质(Nacl)产生等离子体,等离子体中的高速带电粒子直接打断分子键,使蛋白质等组织裂解汽化成H2,O2,CO2,N2和甲烷等低分子量气体。
等离子清洗一般是利用激光、微波、电晕放电、热电离、弧光放电等多种方式将气体激发成等离子状态。在等离子清洗应用中,主要是利用低压气体辉光等离子体。
等离子体天体物理学的介绍
1、等离子体物理学目的是研究发生在等离子体中的一些基本过程,包括等离子体的运动、等离子体中的波动现象、等离子体的平衡和稳定性、碰撞与输运过程等等。
2、等离子体天体物理学是以等离子体物理学为基础的天体物理学分支。宇宙中绝大部分物质是等离子体,因此等离子体天体物理学的研究范围很广,包括日冕、超新星遗迹、活动星系核、致密星、星际介质等。
3、等离子体天体物理学著重研究天体等离子体中各种不稳定的物理过程。在天体等离子体中﹐两体碰撞不是粒子间相互作用的主要形式﹐更重要的是带电粒子(电子和离子)间的集体相互作用﹐它能激发各种振汤和波动。
4、反过来,我们可以把等离子体定义为:正离子和电子的密度大致相等的电离气体。从刚才提到的微弱的蜡烛火焰,我们可以看到等离子体的存在,而夜空中的满天星斗又都是高温的完全电离等离子体。
5、宇宙物质绝大部分处于等离子态。例如﹐地球的电离层和地球磁层﹑行星际空间的太阳风﹑太阳的大气﹑某些磁变星﹑星际物质以及星系际物质等。近年来﹐人们认识到天体等离子体远非处于热动平衡状态。
6、等离子体理论 分析射电源的结构﹑超新星遗迹﹑电离氢区﹑脉冲星﹑行星磁层﹑行星际物质﹑星际物质和星系际物质等。基本粒子理论 研究超新星爆发﹑天体中的中微子过程(见中微子天文学)﹑超密态物质的成分和物态等。